我们为自主无人驾驶飞行器(UAV)设计了一个瓶颈分析工具。该工具通过利用自主UV中的各种组件之间的基本关系,如传感器,计算,身体动态。为了保证安全操作,同时最大化UAV的性能(例如,速度),必须精心设计(或选择)的计算,传感器和其他机械性能。我们所提出的工具的目标是提供一种可视化模型,帮助系统架构师了解自主无人机的最佳计算设计(或选择)。该工具可在此处提供:〜\ url {https://bit.ly/skyline-tool}
translated by 谷歌翻译
Prostate cancer is the most common cancer in men worldwide and the second leading cause of cancer death in the United States. One of the prognostic features in prostate cancer is the Gleason grading of histopathology images. The Gleason grade is assigned based on tumor architecture on Hematoxylin and Eosin (H&E) stained whole slide images (WSI) by the pathologists. This process is time-consuming and has known interobserver variability. In the past few years, deep learning algorithms have been used to analyze histopathology images, delivering promising results for grading prostate cancer. However, most of the algorithms rely on the fully annotated datasets which are expensive to generate. In this work, we proposed a novel weakly-supervised algorithm to classify prostate cancer grades. The proposed algorithm consists of three steps: (1) extracting discriminative areas in a histopathology image by employing the Multiple Instance Learning (MIL) algorithm based on Transformers, (2) representing the image by constructing a graph using the discriminative patches, and (3) classifying the image into its Gleason grades by developing a Graph Convolutional Neural Network (GCN) based on the gated attention mechanism. We evaluated our algorithm using publicly available datasets, including TCGAPRAD, PANDA, and Gleason 2019 challenge datasets. We also cross validated the algorithm on an independent dataset. Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa. The code is available at https://github.com/NabaviLab/Prostate-Cancer.
translated by 谷歌翻译
Causal phenomena associated with rare events frequently occur across a wide range of engineering and mathematical problems, such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory. However, current methods for causal discovery are often unable to uncover causal links between random variables that manifest only when the variables first experience low-probability realizations. To address this issue, we introduce a novel algorithm that performs statistical independence tests on data collected from time-invariant dynamical systems in which rare but consequential events occur. We seek to understand if the state of the dynamical system causally affects the likelihood of the rare event. In particular, we exploit the time-invariance of the underlying data to superimpose the occurrences of rare events, thus creating a new dataset, with rare events are better represented, on which conditional independence tests can be more efficiently performed. We provide non-asymptotic bounds for the consistency of our algorithm, and validate the performance of our algorithm across various simulated scenarios, with applications to traffic accidents.
translated by 谷歌翻译
We propose a new model-based offline RL framework, called Adversarial Models for Offline Reinforcement Learning (ARMOR), which can robustly learn policies to improve upon an arbitrary baseline policy regardless of data coverage. Based on the concept of relative pessimism, ARMOR is designed to optimize for the worst-case relative performance when facing uncertainty. In theory, we prove that the learned policy of ARMOR never degrades the performance of the baseline policy with any admissible hyperparameter, and can learn to compete with the best policy within data coverage when the hyperparameter is well tuned, and the baseline policy is supported by the data. Such a robust policy improvement property makes ARMOR especially suitable for building real-world learning systems, because in practice ensuring no performance degradation is imperative before considering any benefit learning can bring.
translated by 谷歌翻译
Tuberculosis (TB), an infectious bacterial disease, is a significant cause of death, especially in low-income countries, with an estimated ten million new cases reported globally in $2020$. While TB is treatable, non-adherence to the medication regimen is a significant cause of morbidity and mortality. Thus, proactively identifying patients at risk of dropping off their medication regimen enables corrective measures to mitigate adverse outcomes. Using a proxy measure of extreme non-adherence and a dataset of nearly $700,000$ patients from four states in India, we formulate and solve the machine learning (ML) problem of early prediction of non-adherence based on a custom rank-based metric. We train ML models and evaluate against baselines, achieving a $\sim 100\%$ lift over rule-based baselines and $\sim 214\%$ over a random classifier, taking into account country-wide large-scale future deployment. We deal with various issues in the process, including data quality, high-cardinality categorical data, low target prevalence, distribution shift, variation across cohorts, algorithmic fairness, and the need for robustness and explainability. Our findings indicate that risk stratification of non-adherent patients is a viable, deployable-at-scale ML solution.
translated by 谷歌翻译
We present a smoothly broken power law functional form that accurately models and extrapolates the scaling behaviors of deep neural networks (i.e. how the evaluation metric of interest varies as the amount of compute used for training, number of model parameters, training dataset size, or upstream performance varies) for each task within a large and diverse set of upstream and downstream tasks, in zero-shot, prompted, and fine-tuned settings. This set includes large-scale vision and unsupervised language tasks, diffusion generative modeling of images, arithmetic, and reinforcement learning. When compared to other functional forms for neural scaling behavior, this functional form yields extrapolations of scaling behavior that are considerably more accurate on this set. Moreover, this functional form accurately models and extrapolates scaling behavior that other functional forms are incapable of expressing such as the non-monotonic transitions present in the scaling behavior of phenomena such as double descent and the delayed, sharp inflection points present in the scaling behavior of tasks such as arithmetic. Lastly, we use this functional form to glean insights about the limit of the predictability of scaling behavior. Code is available at https://github.com/ethancaballero/broken_neural_scaling_laws
translated by 谷歌翻译
Individual neurons in neural networks often represent a mixture of unrelated features. This phenomenon, called polysemanticity, can make interpreting neural networks more difficult and so we aim to understand its causes. We propose doing so through the lens of feature \emph{capacity}, which is the fractional dimension each feature consumes in the embedding space. We show that in a toy model the optimal capacity allocation tends to monosemantically represent the most important features, polysemantically represent less important features (in proportion to their impact on the loss), and entirely ignore the least important features. Polysemanticity is more prevalent when the inputs have higher kurtosis or sparsity and more prevalent in some architectures than others. Given an optimal allocation of capacity, we go on to study the geometry of the embedding space. We find a block-semi-orthogonal structure, with differing block sizes in different models, highlighting the impact of model architecture on the interpretability of its neurons.
translated by 谷歌翻译
深神经网络(DNN)通常被设计为依次级联的可区分块/层,其预测模块仅连接到其最后一层。 DNN可以与沿主链的多个点的预测模块相连,其中推理可以在中间阶段停止而无需通过所有模块。最后一个退出点可能会提供更好的预测错误,但还涉及更多的计算资源和延迟。就预测误差和成本而言,一个“最佳”的出口是可取的。最佳出口点可能取决于任务的潜在分布,并且可能会从一个任务类型变为另一种任务类型。在神经推断期间,实例的基础真理可能无法获得,并且每个出口点的错误率无法估算。因此,人们面临在无监督环境中选择最佳出口的问题。先前的工作在离线监督设置中解决了此问题,假设可以使用足够的标记数据来估计每个出口点的错误率并调整参数以提高准确性。但是,经过预训练的DNN通常被部署在新领域中,可能无法提供大量的地面真相。我们将退出选择的问题建模为无监督的在线学习问题,并使用匪徒理论来识别最佳出口点。具体而言,我们专注于弹性BERT,这是一种预先训练的多EXIT DNN,以证明它“几乎”满足了强大的优势(SD)属性,从而可以在不知道地面真相标签的情况下学习在线设置中的最佳出口。我们开发了名为UEE-UCB的基于上限(UCB)的上限(UCB)算法,该算法可证明在SD属性下实现了子线性后悔。因此,我们的方法提供了一种自适应学习多种exit DNN中特定于域特异性的最佳出口点的方法。我们从IMDB和Yelp数据集上进行了验证算法验证我们的算法。
translated by 谷歌翻译
本文开发了一种协作人类机器人探索的方法,该方法利用了隐式协调。大多数自动的单机器人和多机器人勘探系统都要求远程操作员为机器人团队提供明确的指导。很少有人考虑如何将人类合作伙伴与机器人一起嵌入到该领域的指导。对人类机器人探索的剩下的挑战是从人类到机器人的目标有效沟通。在本文中,我们开发了一种方法论,该方法从人的头上的头盔深度相机到机器人的头盔深度摄像头,以及一个基于信息增益的探索目标,并在人类提供的观点中偏向运动计划。结果是一个安全访问感兴趣区域的空中系统,该区域可能无法立即被人类查看或无法触及。该方法在模拟和运动捕获场中的硬件实验中进行了评估。仿真和硬件实验的视频可在以下网址提供:https://youtu.be/7jgkbpvfioe。
translated by 谷歌翻译
本文通过开发一种层次碰撞避免方法来改善基于安全的多旋转器的近电视,该方法根据环境复杂性和感知约束来调节最大速度。在表现出不同混乱的环境中,安全速度调制具有挑战性。现有方法固定了最大速度和地图分辨率,该方法可防止车辆进入狭窄的空间,并将认知负荷置于操作员上的速度。我们通过提出一种高速公路(10 Hz)的远程操作方法来解决这些差距,该方法通过分层碰撞检查调节最大车辆速度。分层碰撞检查器同时适应当地地图的体素尺寸和最大车辆速度,以确保运动计划安全。在模拟和现实世界实验中评估了所提出的方法,并将其与基于非自适应运动原语的远程操作方法进行了比较。结果证明了所提出的详细方法方法的优势以及完成任务的能力,而无需用户指定最大车辆速度。
translated by 谷歌翻译